Epilepsy EEG classification using morphological component analysis
نویسندگان
چکیده
منابع مشابه
EEG classification using generative independent component analysis
We present an application of independent component analysis (ICA) to the discrimination of mental tasks for EEG-based brain computer interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for direct discrimination of different types of EEG signals. By viewing ICA as a generative model, we can use Bayes’ rule to form a classifier. We ...
متن کاملEEG Classification in Epilepsy
Epilepsy is the second most common serious brain disorder after stroke. Worldwide, at least 40 million people or 1% of population currently suffer from epilepsy. Approximately 25-30% of epileptic patients remain unresponsive to antiepileptic drug treatment, which is the standard therapy for epilepsy. There is a growing interest in predicting epileptic seizures using intracranial electroencephal...
متن کاملgenerative independent component analysis for EEG classification
We present an application of Independent Component Analysis (ICA) to the discrimination of mental tasks for EEG-based Brain Computer Interface systems. ICA is most commonly used with EEG for artifact identification with little work on the use of ICA for direct discrimination of different types of EEG signals. By viewing ICA as a generative model, we can use Bayes’ rule to form a classifier. Thi...
متن کاملMining EEG-fMRI using independent component analysis.
Independent component analysis (ICA) is a multivariate approach that has become increasingly popular for analyzing brain imaging data. In contrast to the widely used general linear model (GLM) that requires the user to parameterize the brain's response to stimuli, ICA allows the researcher to explore the factors that constitute the data and alleviates the need for explicit spatial and temporal ...
متن کاملA Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis
EEG signals contain a large amount of ocular artifacts with different time-frequency properties mixing together in EEGs of interest. The artifact removal has been substantially dealt with by existing decomposition methods known as PCA and ICA based on the orthogonality of signal vectors or statistical independence of signal components. We focused on the signal morphology and proposed a systemat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2018
ISSN: 1687-6180
DOI: 10.1186/s13634-018-0568-2